the Santa Fe Convention : XML transportation format for rfc1807 metadata format |
|
The Santa Fe Convention is discontinued.
Please use the Open
Archives Initiative Protocol for Metadata Harvesting instead.
|
The plain text DTD file can be retrieved here.
<!- rfc1807 Metadata Set -->
<!-- This DTD can be used to represent the elements of the
rfc1807 Metadata Set-->
<!-- Version 0.1, Carl Lagoze February 15, 2000 -->
<!ENTITY % doctype "rfc1807">
<!ELEMENT %doctype; (bib-version, id, entry, organization*, title*, type*,
revision*, withdraw*, author*, corp-author*, contact*,
date*, pages*, copyright*, handle*, other_access*,
retrieval*, keyword*, cr-category*, period*,
series*, monitoring*, funding*, contract*,
grant*, language*, notes*, abstract*)>
<!ELEMENT bib-version (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ELEMENT organization (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT revision (#PCDATA)>
<!ELEMENT withdraw (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT corp-author (#PCDATA)>
<!ELEMENT contact (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT pages (#PCDATA)>
<!ELEMENT copyright (#PCDATA)>
<!ELEMENT handle (#PCDATA)>
<!ELEMENT other_access (#PCDATA)>
<!ELEMENT retrieval (#PCDATA)>
<!ELEMENT keyword (#PCDATA)>
<!ELEMENT cr-category (#PCDATA)>
<!ELEMENT period (#PCDATA)>
<!ELEMENT series (#PCDATA)>
<!ELEMENT monitoring (#PCDATA)>
<!ELEMENT funding (#PCDATA)>
<!ELEMENT contract (#PCDATA)>
<!ELEMENT grant (#PCDATA)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ELEMENT abstract (#PCDATA)>
The plain text sample record can be retrieved here.
<?xml version="1.0" encoding="UTF-8" ?> <Disseminate count="0" version="1.0"> <rfc1807:rfc1807 xmlns:rfc1807="ftp://nic.merit.edu/document/rfc/rfc1807.txt"> <rfc1807:pages>10</rfc1807:pages> <rfc1807:title>Parikh's Theorem in Commutative Kleene Algebra</rfc1807:title> <rfc1807:entry>January 15, 1999</rfc1807:entry> <rfc1807:bib-version>CS-TR-v2.1</rfc1807:bib_version> <rfc1807:author>Hopkins, Mark</rfc1807:author> <rfc1807:author>Kozen, Dexter</rfc1807:author> <rfc1807:docid>CORNELLCS:TR99-1724</rfc1807:docid> <rfc1807:abstract>Parikh's Theorem says that the commutative image of every context free language is the commutative image of some regular set. Pilling has shown that this theorem is essentially a statement about least solutions of polynomial inequalities. We prove the following general theorem of commutative Kleene algebra, of which Parikh's and Pilling's theorems are special cases: Every system of polynomial inequalities $f_i(x_1,\ldots,x_n) \leq x_i$, $1\leq i\leq n$, over a commutative Kleene algebra $K$ has a unique least solution in $K^n$; moreover, the components of the solution are given by polynomials in the coefficients of the $f_i$. We also give a closed-form solution in terms of the Jacobian matrix.</rfc1807:abstract> <rfc1807:date>January 4, 1999</rfc1807:date> </rfc1807:rfc1807> </Disseminate>
__________________ | |
get in touch with the Open Archives initiative by contacting openarchives@openarchives.org |
|
llast updated January 20th 2001 |